基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有的细胞分类方法在准确率方面无法满足人们要求的现象,本文提出一种基于深度卷积神经网络的细胞分类新方法:嵌套残差网络(Multiple Residual Neural Network,M-ResNet).该方法以深度学习理论为基础,在原始ResNet50基础上添加了更高级别的快捷连接(嵌套快捷连接),以挖掘残差网络的优化能力.实验采取宫颈癌细胞作为数据集进行了细胞分类方法测试,其中3528幅作为训练集,350幅作为测试集.通过与ResNet50网络模型进行对比实验,得出测试结果表明:该方法可以有效提高细胞分类的正确率和工作效率,验证了该方法的有效性.这些研究对卷积神经网络的应用和细胞分类方法的发展有着重要的意义,有很好的现实价值.
推荐文章
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
基于Alexnet卷积神经网络的加密芯片模板攻击新方法
加密芯片
卷积神经网络
模板分析
高级加密标准
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的细胞分类新方法
来源期刊 测试技术学报 学科 工学
关键词 宫颈细胞 深度学习 卷积神经网络 残差网络 快捷连接
年,卷(期) 2019,(6) 所属期刊栏目 人工智能与神经网络
研究方向 页码范围 509-515
页数 7页 分类号 TP391.7
字数 5014字 语种 中文
DOI 10.3969/j.issn.1671-7449.2019.06.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (175)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(12)
  • 参考文献(3)
  • 二级参考文献(9)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
宫颈细胞
深度学习
卷积神经网络
残差网络
快捷连接
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测试技术学报
双月刊
1671-7449
14-1301/TP
大16开
太原13号信箱
22-14
1986
chi
出版文献量(篇)
2837
总下载数(次)
7
总被引数(次)
13975
论文1v1指导