基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia recently.This paper focuses on mobile users’computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy.Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown,we use the modelfree reinforcement learning(RL)framework to formulate and tackle the computation offloading problem.Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function,then it chooses the overhead-aware optimal computation offloading action(local computing or edge computing)based on its state.The state spaces are high-dimensional in our work and value function is unrealistic to estimate.Consequently,we use deep reinforcement learning algorithm,which combines RL method Q-learning with the deep neural network(DNN)to approximate the value functions for complicated control applications,and the optimal policy will be obtained when the value function reaches convergence.Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users.
推荐文章
改进的Q-Learning算法及其在路径规划中的应用
路径规划
人工智能
强化学习
Q-Learning
基于Q-learning的机会频谱接入信道选择算法
认知无线电
机会频谱接入
Q学习
信道选择
Boltzmann规则
基于生成模型的Q-learning二分类算法
Q-learning
生成模型
二分类
最小二乘时序差分算法
半梯度下降法
基于情感计算和Q-learning的agent自主追逐行为过程研究
情感计算
Q学习
博弈论
多智能体
自主追逐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 MOBILE EDGE COMPUTING COMPUTATION OFFLOADING resource allocation DEEP reinforcement learning
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 89-104
页数 16页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MOBILE
EDGE
COMPUTING
COMPUTATION
OFFLOADING
resource
allocation
DEEP
reinforcement
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导