基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高行人再识别算法的识别效果,该文提出一种基于注意力模型的行人属性分级识别神经网络模型,相对于现有算法,该模型有以下3大优点:一是在网络的特征提取部分,设计用于识别行人属性的注意力模型,提取行人属性信息和显著性程度;二是在网络的特征识别部分,针对行人属性的显著性程度和包含的信息量大小,利用注意力模型对属性进行分级识别;三是分析属性之间的相关性,根据上一级的识别结果,调整下一级的识别策略,从而提高小目标属性的识别准确率,进而提高行人再识别的准确率.实验结果表明,该文提出的模型相较于现有方法,有效提高了行人再识别的首位准确率,其中,Market1501数据集上,首位准确率达到了93.1%,在DukeMTMC数据集上,首位准确率达到了81.7%.
推荐文章
基于局部深度匹配的行人再识别
行人再识别
分块匹配
可变部件模型
深度神经网络
基于辨识特征后融合的行人再识别
行人再识别
多特征融合
距离度量学习
距离融合
最小最大标准化
基于提升方法的多度量行人再识别
行人再识别
特征表达
度量学习
提升方法
距离融合
公共数据集
基于重叠条纹特征融合的行人再识别
行人再识别
HSV颜色直方图
Gabor纹理特征直方图
重叠条纹
特征融合
交叉视角逻辑度量学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于行人属性分级识别的行人再识别
来源期刊 电子与信息学报 学科 工学
关键词 行人再识别 注意力模型 深度学习 显著性 属性分级
年,卷(期) 2019,(9) 所属期刊栏目 论文
研究方向 页码范围 2239-2246
页数 8页 分类号 TP391.41
字数 6281字 语种 中文
DOI 10.11999/JEIT180740
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李邵梅 45 204 7.0 12.0
2 陈鸿昶 61 354 10.0 16.0
3 高超 22 27 3.0 3.0
4 吴彦丞 4 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (15)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (1)
二级引证文献  (0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人再识别
注意力模型
深度学习
显著性
属性分级
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导