基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高基于深度学习和属性学习的行人再识别的识别精度,提出一种联合识别行人属性和行人ID的神经网络模型.相对于已有的同类方法,该模型有三大优点:1)为了提高网络在微调后的判别能力,在网络中增加了一层保证模型迁移能力的全连接层;2)基于各属性样本的数量,在损失函数中对各属性的损失进行了归一化处理,避免数据集中属性类之间的数量不均衡对识别效果的影响;3)利用数据中各属性分布的先验知识,通过数量占比来调整各属性在损失层中的权重,避免数据集中各属性正负样本的数量不均衡对识别的影响.实验结果表明,本文提出的算法具有较高的识别率,其中在Market 1501数据集上,首位匹配率达到了86.90%,在DukeMTMC数据集上,首位匹配率达到了72.83%,在PETA数据集上,首位匹配率达到了75.68%,且对光照变化、行人姿态变化、视角变化和遮挡都具有很好的鲁棒性.
推荐文章
基于局部深度匹配的行人再识别
行人再识别
分块匹配
可变部件模型
深度神经网络
基于辨识特征后融合的行人再识别
行人再识别
多特征融合
距离度量学习
距离融合
最小最大标准化
基于提升方法的多度量行人再识别
行人再识别
特征表达
度量学习
提升方法
距离融合
公共数据集
基于重叠条纹特征融合的行人再识别
行人再识别
HSV颜色直方图
Gabor纹理特征直方图
重叠条纹
特征融合
交叉视角逻辑度量学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于行人属性先验分布的行人再识别
来源期刊 自动化学报 学科
关键词 行人再识别 数据先验分布 权重调整 深度学习 卷积神经网络
年,卷(期) 2019,(5) 所属期刊栏目 论文与报告
研究方向 页码范围 953-964
页数 12页 分类号
字数 9830字 语种 中文
DOI 10.16383/j.aas.c170691
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李邵梅 45 204 7.0 12.0
2 陈鸿昶 61 354 10.0 16.0
3 高超 22 27 3.0 3.0
4 吴彦丞 4 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (40)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人再识别
数据先验分布
权重调整
深度学习
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
论文1v1指导