基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前,相当多的显著目标检测方法均聚焦于2D的图像上,而RGB-D图像所需要的显著检测方法与单纯的2D图像相去甚远,这就需要新的适用于RGB-D的显著检测方法.该文在经典的RGB显著检测方法,即极限学习机的应用的基础上,提出融合了特征提取、前景增强、深度层次检测等多种思路的新的RGB-D显著性检测方法.该文的方法是:第一,运用特征提取的方法,提取RGB图4个超像素尺度的4096维特征;第二,依据特征提取中产生的4个尺度的超像素数量,分别提取RGB图的RGB,LAB,LBP特征以及深度图的LBE特征;第三,根据LBE和暗通道特征两种特征求出粗显著图,并在4个尺度的遍历中不断强化前景、削弱背景;第四,根据粗显著图选取前景与背景种子,放入极限学习机中进行分类,得到第1阶段显著图;第五,运用深度层次检测、图割等方法对第1阶段显著图进行再次优化,得到第2阶段显著图,即最终显著图.
推荐文章
基于麻雀搜索优化深度极限学习机的入侵检测方法
麻雀搜索算法
深度极限学习机
入侵检测
随机游走
基于空-频域混合分析的RGB-D数据视觉显著性检测方法
视觉显著性
深度信息
超复数傅里叶变换
环境理解
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化的极限学习机和深度层次的RGB-D显著检测
来源期刊 电子与信息学报 学科 工学
关键词 RGB-D显著目标检测 极限学习机 流程优化 多特征 深度层次优化
年,卷(期) 2019,(9) 所属期刊栏目 论文
研究方向 页码范围 2224-2230
页数 7页 分类号 TP391
字数 4349字 语种 中文
DOI 10.11999/JEIT180826
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘政怡 安徽大学计算机科学与技术学院 50 241 9.0 12.0
2 徐天泽 安徽大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RGB-D显著目标检测
极限学习机
流程优化
多特征
深度层次优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
相关基金
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
论文1v1指导