基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
点云数据的无序性、稀疏性和有限性等特点给基于深度学习的点云模型分类带来了较大的困难.现有的面向点云的深度学习网络存在模型架构复杂、训练参数较多的问题,难以适用于实时点云识别任务,为此提出一种轻量级实时点云网络——LightPointNet.首先,基于点云模型的特点及轻量级点云分类网络的设计原则,提出面向点云模型分类的深度学习网络原型;然后,通过控制变量法完成网络参数设置的优化,形成最终的点云网络LightPointNet.该网络结构紧凑,仅包含3层卷积,1层池化和1层全连接,且其参数个数不到0.07M.实验结果表明,在ModelNet40上,相比PointNet,VoxNet和LightNet,LightPointNet分类精度分别提高了0.29%,6.49%和2.59%,参数量减少了98.0%,92.4%和76.6%;在MINST和SHREC15上,该网络拥有良好的普适性;这些结果充分证明了LightPointNet分类性能良好且计算效率高,具有轻量级、实时性优点,可以部署在嵌入式设备中,在物联网和点云实时处理等方面具有广阔的应用前景.
推荐文章
基于轻量级卷积神经网络的实时缺陷检测方法研究
卷积神经网络
深度可分离卷积
通道混洗
缺陷检测
保护隐私的轻量级云数据共享方案
数据共享
云存储
可搜索加密
广播加密
轻量级网络入侵检测系统--Snort的研究
Snort
入侵检测系统
轻量级
规则
基于分组残差结构的轻量级卷积神经网络设计
卷积神经网络
分组
残差
分类性能
轻量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 轻量级实时点云分类网络LightPointNet
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 点云 三维模型分类 深度学习 轻量级实时网络
年,卷(期) 2019,(4) 所属期刊栏目 图像与视觉
研究方向 页码范围 612-621
页数 10页 分类号 TP391.41
字数 8667字 语种 中文
DOI 10.3724/SP.J.1089.2019.17328
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 白静 北方民族大学计算机科学与工程学院 14 55 4.0 7.0
3 秦飞巍 杭州电子科技大学计算机学院 10 29 3.0 5.0
4 司庆龙 北方民族大学计算机科学与工程学院 3 14 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (3)
同被引文献  (1)
二级引证文献  (0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
点云
三维模型分类
深度学习
轻量级实时网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
宁夏自然科学基金
英文译名:Natural Science Foundation of Ningxia Province
官方网址:http://202.201.112.98/research/main/news_view.asp?newsid=158
项目类型:重大项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导