基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
光伏发电功率对光伏发电的可靠性起着决定性作用.针对Elman神经网络收敛速度慢、训练时间较长的问题,利用果蝇算法(FOA)来优化Elman神经网络的权值和阈值,从而提高运行效率.建立了基于FOA-Elman神经网络的光伏发电功率预测模型,并给出了算法设计及编码方案.仿真实验结果表明,FOA-Elman模型预测精度比传统Elman神经网络模型预测精度高,更适合于光伏发电功率预测.
推荐文章
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
光伏发电系统发电功率预测
光伏
功率预测
粒子群算法
核函数极限学习机
基于FOA-Elman神经网络的光伏电站短期出力预测模型
光伏电站
出力预测
Elman神经网络
FOA算法
基于改进相似样本选取与特征提取的光伏发电功率预测方法
光伏发电功率预测
野值剔除与补正
优化相似样本
特征提取
广义回归神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FOA-Elman神经网络的光伏发电功率预测模型
来源期刊 电工电气 学科 工学
关键词 光伏发电 功率预测 果蝇算法 Elman神经网络 预测精度
年,卷(期) 2019,(12) 所属期刊栏目 设计与研究
研究方向 页码范围 1-4,49
页数 5页 分类号 TM615
字数 2911字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李萍 宁夏大学物理与电子电气工程学院 33 102 6.0 8.0
2 李芸 宁夏大学物理与电子电气工程学院 4 1 1.0 1.0
3 麻利新 宁夏大学物理与电子电气工程学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (10)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光伏发电
功率预测
果蝇算法
Elman神经网络
预测精度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电工电气
月刊
1007-3175
32-1800/TM
大16开
苏州新区滨河路永和街7号
28-184
1981
chi
出版文献量(篇)
2747
总下载数(次)
6
总被引数(次)
7236
论文1v1指导