基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Artificial intelligence on diabetic retinopathy diagnosis: an automatic classification method based on grey level co-occurrence matrix and naive Bayesian model
来源期刊 国际眼科杂志:英文版 学科 医学
关键词 GREY level CO-OCCURRENCE matrix BAYESIAN textures artificial intelligence receiver operating characteristiccurve DIABETIC RETINOPATHY
年,卷(期) gjykzzywb_2019,(7) 所属期刊栏目
研究方向 页码范围 1158-1162
页数 5页 分类号 R
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GREY
level
CO-OCCURRENCE
matrix
BAYESIAN
textures
artificial
intelligence
receiver
operating
characteristiccurve
DIABETIC
RETINOPATHY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际眼科杂志:英文版
月刊
2222-3959
西安市友谊东路269号
出版文献量(篇)
2720
总下载数(次)
2
论文1v1指导