基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对肺结节低层特征在网络传输过程中的缺失问题,基于多尺度特征结构,提出一种改进的U-Net卷积神经网络肺结节检测算法.采用卷积操作与池化操作获取高层特征,通过密集网络使得特征信息在输入层和输出层之间高速流通,并结合扩张卷积生成多尺度特征,提高肺结节低层特征的利用率.实验结果表明,与传统U-Net卷积神经网络的肺结节检测算法相比,改进算法对于小型结节的检测准确率约提高20%,可实现更准确的肺部病灶区域定位.
推荐文章
多尺度监督U-Net甲状腺结节超声图像分割
图像分割
深度学习
注意力机制
神经网络
U 型网络
基于混合损失联合调优与多尺度分类相结合的肺结节检测算法
肺结节检测
混合损失
联合调优
注意力
多尺度
基于空洞U-Net神经网络的PET图像重建算法
图像重建
空洞卷积
U-Net
感知损失
PET
VGG
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度特征结构的U-Net肺结节检测算法
来源期刊 计算机工程 学科 工学
关键词 小目标检测 卷积神经网络 深度学习 密集网络 肺结节
年,卷(期) 2019,(4) 所属期刊栏目 图形图像处理
研究方向 页码范围 254-261
页数 8页 分类号 TP391.41
字数 8805字 语种 中文
DOI 10.19678/j.issn.1000-3428.0051769
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦品乐 中北大学大数据学院 48 248 8.0 13.0
2 朱辉 中北大学大数据学院 2 4 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (179)
参考文献  (17)
节点文献
引证文献  (2)
同被引文献  (20)
二级引证文献  (0)
1945(1)
  • 参考文献(1)
  • 二级参考文献(0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(8)
  • 参考文献(2)
  • 二级参考文献(6)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(12)
  • 参考文献(2)
  • 二级参考文献(10)
2017(9)
  • 参考文献(4)
  • 二级参考文献(5)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小目标检测
卷积神经网络
深度学习
密集网络
肺结节
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
论文1v1指导