基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对随着城市化的快速发展,城市与城市间的辨识度越来越弱,城市地标的概念越来越热门这一现象,提出了一种基于深度学习的建筑物识别方法;使用改进的Faster R-CNN算法作为训练模型,首先,将需要识别的图片输入深度神经网络,提取出特征框图;然后,模型通过区域建议网络预测目标建筑物所在位置的区域建议,并将这些区域建议映射到特征框图上,RoI Pooling层将这些区域建议转换成固定大小的特征框图;最后使用非极大值抑制从预测边界框中移除相似的结果,得到预测边界框以及边框中目标建筑物的类别和概率;实验结果表明:在训练数据集充足的条件下,使用此方法对地标建筑物的识别率能达到90.8%,通过与其他模型比较分析,该模型具有较好的识别效果.
推荐文章
基于特征学习的建筑物自动识别算法研究
建筑物检测
SVM分类器
GMRF模型
先验知识
基于ENVI深度学习的建筑物识别
ENVI
深度学习
TensorFlow
建筑物识别
基于深度学习的高分辨率 遥感影像建筑物提取
遥感影像;
建筑物提取;
多尺度;
深度学习
不同特征融合的震后损毁建筑物识别研究
遥感影像
多特征融合
纹理特征
损毁建筑物
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的建筑物识别
来源期刊 重庆工商大学学报(自然科学版) 学科 工学
关键词 深度学习 建筑物识别 城市化
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 17-22
页数 6页 分类号 TP391.1
字数 3710字 语种 中文
DOI 10.16055/j.issn.1672-058X.2019.0004.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林金朝 重庆邮电大学通信与信息工程学院 67 381 9.0 18.0
2 杨宏志 重庆邮电大学通信与信息工程学院 2 0 0.0 0.0
3 邓瑞 重庆邮电大学通信与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (209)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
建筑物识别
城市化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导