基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了从广域视角准确提取道路交通信息,提出了一种用于无人机视频车辆自动识别的改进Faster R-CNN模型.该模型以基于ZF网络的Faster R-CNN为原型,优化调整学习策略、训练图像尺寸、学习率等模型参数,调整RPN网络卷积核并引入SoftNMS算法,增加1~3个特征提取卷积层和激活层.基于无人机交通视频构建了训练图像集,对现有Faster R-CNN模型及改进模型进行训练和测试.结果显示,与采用Step学习策略的模型相比,采用学习策略Inv的模型车辆识别平均准确率提高了0.4%~9.4%.引入SoftNMS算法的模型比引入前的模型平均准确率提高了0.1%~7.9%.提出的改进模型平均准确率为94.6%,较基于ZF的Faster R-CNN模型、基于VGGM的Faster R-CNN模型和基于VGG16的Faster R-CNN模型分别提高了13.1%、13.1%和4.1%,且训练时间减少约3%,对多种场景的视频车辆检测具有较好的适用性.
推荐文章
一种改进的Faster R-CNN对小尺度车辆检测研究
FasterR-CNN
小尺度车辆检测
全卷积网络
区域建议网络
锚选择
平衡锚数量
无人机舵偏角的自动检测
无人机
舵偏角
单片机
自动检测
基于改进Faster R-CNN算法的两轮车视频检测
两轮车视频检测
两轮车检测模型
改进FasterR-CNN算法
RPN网络
参数修改
多尺度特征融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进Faster R-CNN的无人机视频车辆自动检测
来源期刊 东南大学学报(自然科学版) 学科 交通运输
关键词 智能交通 车辆检测 深度学习 无人机视频 Faster R-CNN
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 1199-1204
页数 6页 分类号 U491.1
字数 4961字 语种 中文
DOI 10.3969/j.issn.1001-0505.2019.06.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡晓禹 重庆交通大学山地城市交通系统与安全重庆市重点实验室 35 126 6.0 10.0
5 彭博 重庆交通大学山地城市交通系统与安全重庆市重点实验室 24 45 4.0 6.0
9 张媛媛 重庆交通大学交通运输学院 9 5 1.0 1.0
10 唐聚 重庆交通大学交通运输学院 7 4 1.0 1.0
11 谢济铭 重庆交通大学交通运输学院 6 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (16)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能交通
车辆检测
深度学习
无人机视频
Faster R-CNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(自然科学版)
双月刊
1001-0505
32-1178/N
大16开
南京四牌楼2号
28-15
1955
chi
出版文献量(篇)
5216
总下载数(次)
12
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导