作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有在线内容流行度预测方法忽略对传播级联演化过程中的结构和时序特征的捕获.针对此问题,文中提出基于图注意力时空神经网络的在线内容流行度预测模型.利用图注意力机制学习在线内容的级联结构表示,利用时序卷积网络捕获传播级联的时序特征,通过全卷积层映射在线内容的流行度.在新浪微博和美国物理学会引文两个不同场景的数据集上的实验表明,文中方法的流行度预测性能较优.
推荐文章
采用循环神经网络的情感分析注意力模型
情感分析
循环神经网络
注意力
长短时记忆
基于循环神经网络和注意力模型的文本情感分析
文本情感分析
深度学习
长短期记忆模型
注意力模型
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
基于记忆的注意力图神经网络专家推荐方法
专家推荐
图神经网络
记忆网络
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图注意力时空神经网络的在线内容流行度预测
来源期刊 模式识别与人工智能 学科 工学
关键词 流行度预测 信息传播 图注意力网络 时序卷积网络
年,卷(期) 2019,(11) 所属期刊栏目 研究与应用
研究方向 页码范围 1014-1021
页数 8页 分类号 TP391
字数 7285字 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.201911006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 鲍鹏 北京交通大学软件学院 2 4 1.0 2.0
2 徐昊 北京交通大学软件学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
流行度预测
信息传播
图注意力网络
时序卷积网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导