基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对训练样本或测试样本存在污损的情况,提出一种结构化加权稀疏低秩恢复算法(structured and weighted-sparse low rank representation,SWLRR).SWLRR对低秩表示进行加权稀疏约束和结构化约束,使得低秩表示系数更加趋近于块对角结构,进而可获得具有判别性的低秩表示.SWLRR将训练样本恢复成干净训练样本后,再根据原始训练样本和恢复后的训练样本学习到低秩投影矩阵,把测试样本投影到相应的低秩子空间,即可有效地去除测试样本中的污损部分.在几个人脸数据库上的实验结果验证了SWLRR在不同情况下的有效性和鲁棒性.
推荐文章
针对混合污染的结构化鲁棒低秩恢复算法在人脸识别中的应用
混合污染
人脸识别
结构化约束
低秩恢复
低秩矩阵恢复算法综述
低秩矩阵恢复
鲁棒主成分分析
矩阵补全
低秩表示
增广拉格朗日乘子算法
基于鉴别性低秩表示及字典学习的鲁棒人脸识别算法
人脸识别
低秩表示
字典学习
稀疏线性表示
基于低秩矩阵恢复和Gabor特征的遮挡人脸识别
人脸识别
低秩矩阵恢复
Gabor特征
字典压缩
协作表示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结构化加权稀疏低秩恢复算法在人脸识别中的应用
来源期刊 智能系统学报 学科 工学
关键词 人脸识别 结构化 加权稀疏 低秩表示 子空间投影
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 455-463
页数 9页 分类号 TP391
字数 7766字 语种 中文
DOI 10.11992/tis.201711026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴小俊 江南大学物联网工程学院 170 1079 17.0 22.0
2 吴小艺 江南大学物联网工程学院 4 28 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (21)
节点文献
引证文献  (1)
同被引文献  (7)
二级引证文献  (0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
结构化
加权稀疏
低秩表示
子空间投影
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导