基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统手势识别方法中人工特征提取信息不完整导致的识别率较低以及识别手势类别较少的问题,基于卷积神经网络(Convolutional Neural Network,CNN)的原理,设计了一种深度CNN框架,对多通道的表面肌电信号进行手势动作识别.所应用的表面肌电信号数据来自Ninapro数据库中DB2健康个体数据集,分别识别9种手指动作和49种手势动作(49种手势动作包含9种手指动作),另外40种手势动作是17种基本手势动作和23种手腕动作.对数据集的表面肌电信号数据进行提取均方根值特征,生成12通道的训练集、 验证集和测试集.将处理过的表面肌电信号送入到深度CNN中,经过卷积、 批次归一化、 池化、 梯度下降及dropout层处理,仿真测试后,DB2数据集的9种手势动作识别率是99.10%,49种手势动作手势不识别率是64.58%.
推荐文章
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的手势动作识别
来源期刊 无线电工程 学科 工学
关键词 表面肌电信号 卷积神经网络 批次归一化 梯度下降 手势识别
年,卷(期) 2019,(7) 所属期刊栏目 专题: 模式识别+人工智能
研究方向 页码范围 587-591
页数 5页 分类号 TP183
字数 4049字 语种 中文
DOI 10.3969/j.issn.1003-3106.2019.07.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张朝柱 哈尔滨工程大学信息与通信工程学院 51 229 8.0 13.0
2 顾晓婷 哈尔滨工程大学信息与通信工程学院 1 2 1.0 1.0
3 张艺漫 哈尔滨工程大学信息与通信工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (38)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (17)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(14)
  • 参考文献(0)
  • 二级参考文献(14)
2017(13)
  • 参考文献(2)
  • 二级参考文献(11)
2018(7)
  • 参考文献(7)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
表面肌电信号
卷积神经网络
批次归一化
梯度下降
手势识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线电工程
月刊
1003-3106
13-1097/TN
大16开
河北省石家庄市174信箱215分箱
18-150
1971
chi
出版文献量(篇)
5453
总下载数(次)
12
总被引数(次)
20875
论文1v1指导