基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着Intemet的普及,各类社交网络走进人们的视野,用户为满足不同的服务需求,往往不会局限于单一社交网络中,因此,跨社交网络环境下的用户识别问题成为研究者的热门话题.主要利用网络结构信息,针对社交网络对齐问题进行研究,主要包含以下研究点:首先,将网络对齐问题抽象为最大公共子图问题(α-MCS),并提出求解自适应参数α的方法,相比于传统的基于启发式定义参数α的方法,该方法可有效区分不同类型网络中匹配用户与非匹配用户;其次,为快速而准确地解决α-MCS,提出了基于最大公共子图的迭代式网络对齐算法MCS_INA(α-MCS based iterative network alignment algorithm),该算法每次迭代过程主要包含两个阶段.第1个阶段,分别在两个社交网络中选取各自的候选匹配用户,第2个阶段,针对候选匹配用户进行识别.相比于其他算法,MCS_INA时间代价低,且依据不同网络特征,通过参数估计,可保证较高的识别精度;最后,在真实数据集和合成数据集中验证了算法MCS_INA的有效性.
推荐文章
最大公共子图的约束符号求解方法
最大公共子图
软约束满足问题
全局约束
ADD
基于最大公共子图的本体映射方法研究
语义关系
相似度
最大公共子图
本体映射
图结构
一种基于极大完全子图的最大频繁项集并行挖掘算法
数据挖掘
关联规则
极大完全子图
频繁项集
并行算法
一种基于图的网络拓扑概率故障定位方法
拓扑发现
无向图
拓扑故障定位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于最大公共子图的社交网络对齐方法
来源期刊 软件学报 学科 工学
关键词 社交网络 最大公共子图 用户识别 网络对齐
年,卷(期) 2019,(7) 所属期刊栏目 数据库技术
研究方向 页码范围 2175-2187
页数 13页 分类号 TP311
字数 9624字 语种 中文
DOI 10.13328/j.cnki.jos.005831
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于戈 东北大学计算机科学与工程学院 426 6587 38.0 64.0
2 申德荣 东北大学计算机科学与工程学院 111 1289 18.0 32.0
3 寇月 东北大学计算机科学与工程学院 68 816 12.0 26.0
4 聂铁铮 东北大学计算机科学与工程学院 69 854 13.0 27.0
5 冯朔 东北大学计算机科学与工程学院 3 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社交网络
最大公共子图
用户识别
网络对齐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导