基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文利用蚁群算法鲁棒性及全局寻优优点,帮助BP神经网络选取最优权值及阈值,以解决其易陷入局部最优解的缺陷,并基于Santa Cruz盆地多波束及底质采样数据,采用蚁群算法优化的BP神经网络对该盆地内存在的基岩、泥质砂、砂质泥三种底质类型训练分类.从网络预测平均误差和底质分类正确率对比来看,相较于传统BP神经网络,在相同训练次数下,采用蚁群算法优化后的神经网络,网络预测平均误差明显下降,下降比率达20.2%,底质分类正确率显著提高,正确率达90%以上.从区域多波束声学底质分类图来看,底质类型分布状态更加贴近自然规律,获得了良好分类效果.
推荐文章
基于蚁群算法优化BP神经网络的政务云网络态势预测研究
政务云
主动防御
BP神经网络
蚁群算法
态势预测
预测精度
基于混沌蚁群算法的BP神经网络训练研究
群智能
混沌蚁群算法
BP神经网络
基于蚁群优化算法的BP神经网络的RPROP混合算法仿真的研究
蚁群优化算法
BP神经网络
RPROP混合算法
一种基于蚁群算法与粗糙集的混合 BP神经网络
蚁群算法ACA
粗糙集
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群算法优化BP神经网络声学底质分类方法
来源期刊 中国海洋大学学报(自然科学版) 学科 地球科学
关键词 BP神经网络 蚁群算法 多波束测深系统 底质分类
年,卷(期) 2019,(z1) 所属期刊栏目 研究论文
研究方向 页码范围 60-68
页数 9页 分类号 P714.6
字数 7748字 语种 中文
DOI 10.16441/j.cnki.hdxb.20190295
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李广雪 中国海洋大学海洋地球科学学院 13 169 6.0 13.0
5 权永峥 中国海洋大学海洋地球科学学院 3 6 2.0 2.0
6 王祥东 2 0 0.0 0.0
7 秦浩森 中国海洋大学海洋地球科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (90)
共引文献  (390)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(5)
  • 参考文献(0)
  • 二级参考文献(5)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(7)
  • 参考文献(1)
  • 二级参考文献(6)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(5)
  • 参考文献(2)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(7)
  • 参考文献(2)
  • 二级参考文献(5)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(15)
  • 参考文献(3)
  • 二级参考文献(12)
2007(11)
  • 参考文献(2)
  • 二级参考文献(9)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
蚁群算法
多波束测深系统
底质分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国海洋大学学报(自然科学版)
月刊
1672-5174
37-1414/P
大16开
青岛市松岭路238号
24-31
1959
chi
出版文献量(篇)
4553
总下载数(次)
21
总被引数(次)
47584
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导