作者:
原文服务方: 现代电子技术       
摘要:
入侵检测是保证网络安全的关键技术,为了解决神经网络在入侵检测应用中的参数优化难题,提出蚁群算法选择神经网络参数的网络入侵检测模型.首先描述蚁群算法与神经网络参数之间的联系,并建立神经网络参数选择的目标函数,然后采用蚁群算法对目标函数的最优解进行搜索,确定神经网络的最佳参数,最后通过神经网络自组织学习实现入侵检测分类器的构建,选择入侵检测标准数据在Matlab 2014平台上实现仿真实验.结果表明,该模型解决了神经网络在入侵检测中的参数优化难题,建立了综合性能良好的入侵检测分类器,分类结果和分类速度均比典型模型有较显著的优势.
推荐文章
蚁群算法选择神经网络参数的网络入侵检测
网络安全
非法用户
入侵检测
蚁群算法
蚁群算法选择神经网络参数的网络入侵检测
网络入侵检测
蚁群算法
神经网络
参数选择
数据采集
入侵检测模型
结果分析
蚁群算法选择神经网络参数的网络入侵检测
网络安全
非法用户
入侵检测
蚁群算法
改进蚁群算法优化支持向量机的网络入侵检测
网络入侵
蚁群优化算法
支持向量机
参数优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群算法选择神经网络参数的网络入侵检测
来源期刊 现代电子技术 学科
关键词 网络安全 神经网络 参数优化 蚁群算法 入侵检测分类器
年,卷(期) 2017,(17) 所属期刊栏目 信息安全
研究方向 页码范围 91-93,97
页数 4页 分类号 TN915.08-34|TP391
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2017.17.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 鲍梦 8 9 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (208)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(2)
  • 参考文献(1)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(7)
  • 参考文献(2)
  • 二级参考文献(5)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络安全
神经网络
参数优化
蚁群算法
入侵检测分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导