作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在信息推荐系统中,传统的方法是通过对内容、行为去预测用户的兴趣点来实现信息推送.国内外研究实验结果表明,这种模型推荐性能较为显著,说明用户行为和内容是相关的.根据相关性的对称原理,文章提出了基于用户行为的Word2Vec协同推荐算法,通过神经网络模型来隐式地抽取商品和用户的相互关系并进行向量化表示,能够更好地计算商品和用户间的相似性,以达到提升模型的推荐效果和泛化能力.
推荐文章
基于word2vec和双向LSTM的情感分类深度模型
文本分类
情感分析
双向长短时记忆循环神经网络
词向量
社交网络
基于LDA和word2vec的英文作文跑题检测
作文跑题检测
向量空间模型
潜在狄利克雷分配
词语间语义关系
基于word2vec的数字图书馆本体构建技术研究
本体构建
领域本体
概念抽取
关系抽取
数字图书馆现状
word2vec-ACV:OOV语境含义的词向量生成模型
word2vec模型
词向量
共现矩阵
平均上下文词向量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Word2Vec的神经网络协同推荐模型
来源期刊 网络空间安全 学科 工学
关键词 Word2 Vec 词向量 协同推荐 卷积神经网络
年,卷(期) 2019,(6) 所属期刊栏目 专题:网络与系统安全
研究方向 页码范围 25-28
页数 4页 分类号 TP311.1
字数 2176字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张华伟 江西财经大学网络信息管理中心 10 20 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (92)
共引文献  (169)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(15)
  • 参考文献(3)
  • 二级参考文献(12)
2017(17)
  • 参考文献(2)
  • 二级参考文献(15)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Word2 Vec
词向量
协同推荐
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络空间安全
月刊
1674-9456
10-1421/TP
16开
北京市海淀区紫竹院路66号赛迪大厦18层
82-938
2010
chi
出版文献量(篇)
3296
总下载数(次)
16
论文1v1指导