基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
施工现场光照多变、背景复杂、施工人员形态多样,给安全帽佩戴情况检测带来很大的困难.针对传统检测方法准确率低、鲁棒性差的问题,本文提出了一种基于深度学习的安全帽佩戴情况检测方法.该方法以YOLOv2目标检测方法为基础,对其网络结构进行了改进.首先借鉴了密集连接网络思想,在原网络中加入了密集块,实现了多层特征的融合以及浅层低语义信息与深层高语义信息的兼顾,提高了网络对于小目标检测的敏感性;然后,利用MobileNet中的轻量化网络结构对网络进行压缩,使模型的大小缩减为原来的十分之一,增加了模型的可用性.采用自制的HelmetWear数据集对改进后的网络模型进行训练和测试,并将该模型与原YOLOv2和最新的YOLOv3进行了对比,结果显示:该模型的检测准确率为87.42%,稍逊色于YOLOv3,但是其检测速度提升显著,比YOLOv2和YOLOv3分别提高了37% 和215%,可达148 frame/s.实验表明,改进后的网络模型能在保证检测准确率的同时,有效减小参数量,显著提升检测速度.
推荐文章
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
基于改进Faster RCNN的安全帽佩戴检测研究
安全帽佩戴检测
FasterRCNN
多尺度训练
在线困难样本挖掘
多部件结合
基于深度学习的安全帽检测方法研究
安全帽
不安全行为
深度学习
卷积神经网络
基于改进YOLOv2的无标定3D机械臂自主抓取方法
改进YOLOv2
无标定
PID控制
机械臂抓取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进YOLOv2的快速安全帽佩戴情况检测
来源期刊 光学精密工程 学科 工学
关键词 深度学习 目标检测 安全帽检测 密集连接网络 MobileNet
年,卷(期) 2019,(5) 所属期刊栏目 信息科学
研究方向 页码范围 1196-1205
页数 10页 分类号 TP391.4
字数 3769字 语种 中文
DOI 10.3788/OPE.20192705.1196
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵桢 长春理工大学计算机科学技术学院 16 47 3.0 6.0
2 方明 长春理工大学计算机科学技术学院 35 109 6.0 9.0
3 孙腾腾 长春理工大学计算机科学技术学院 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (26)
参考文献  (6)
节点文献
引证文献  (8)
同被引文献  (32)
二级引证文献  (1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(5)
  • 参考文献(4)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(8)
  • 引证文献(7)
  • 二级引证文献(1)
研究主题发展历程
节点文献
深度学习
目标检测
安全帽检测
密集连接网络
MobileNet
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学精密工程
月刊
1004-924X
22-1198/TH
大16开
长春市东南湖大路3888号
12-166
1959
chi
出版文献量(篇)
6867
总下载数(次)
10
总被引数(次)
98767
论文1v1指导