基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统施工现场安全管理的弊端,减少因施工人员未佩戴安全帽造成的人员伤亡,本文提出一种基于深度学习的安全帽佩戴检测与跟踪方法.首先通过深度学习YOLOv3目标检测网络实现安全帽佩戴检测,进一步运用卡尔曼滤波器和KM算法实现多目标跟踪与计数.复杂施工现场的测试结果表明:网络模型的检测速度可达45 fps,平均精确度为93%,且未佩戴安全帽的查准率和查全率分别为97%和95%,基本能够实现安全帽佩戴情况的实时检测.
推荐文章
基于改进Faster RCNN的安全帽佩戴检测研究
安全帽佩戴检测
FasterRCNN
多尺度训练
在线困难样本挖掘
多部件结合
基于深度学习的安全帽检测方法研究
安全帽
不安全行为
深度学习
卷积神经网络
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
能自动测报体温的智能施工安全帽研究
智能施工安全帽
自动测报体温
防疫装备
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的安全帽佩戴检测与跟踪
来源期刊 计算机与现代化 学科 工学
关键词 安全帽 目标检测 目标跟踪 YOLOv3网络 K-means++聚类 卡尔曼滤波 KM算法
年,卷(期) 2020,(6) 所属期刊栏目 模式识别
研究方向 页码范围 1-6
页数 6页 分类号 TU714|TP391.41
字数 3718字 语种 中文
DOI 10.3969/j.issn.1006-2475.2020.06.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 焦良葆 南京工程学院信息与通信工程学院 34 61 5.0 6.0
2 曹雪虹 南京工程学院信息与通信工程学院 57 151 8.0 8.0
3 秦嘉 南京工程学院信息与通信工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (118)
共引文献  (99)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(20)
  • 参考文献(0)
  • 二级参考文献(20)
2016(11)
  • 参考文献(1)
  • 二级参考文献(10)
2017(15)
  • 参考文献(0)
  • 二级参考文献(15)
2018(28)
  • 参考文献(3)
  • 二级参考文献(25)
2019(17)
  • 参考文献(12)
  • 二级参考文献(5)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
安全帽
目标检测
目标跟踪
YOLOv3网络
K-means++聚类
卡尔曼滤波
KM算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导