基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为能够更加精确地计算出纱线毛羽的根数及毛羽长度,基于最大熵与密度聚类相融合对纱线毛羽的长度及根数进行检测.该方法首先利用双边滤波对采集到的纱线图像进行预处理,滤除图像中的噪声,同时增强纱线毛羽特征;然后利用最大熵对预处理后的纱线图像进行阈值分割,去除条干提取毛羽,并对毛羽进行细化;最后利用密度聚类算法(DBSCAN聚类)对细化后的毛羽进行分类统计,根据所分类的个数以及每类所含像素点的个数计算出毛羽的根数及长度.将实验结果与目测法和基准线法进行比较,结果表明,该方法与目测方法检测的结果非常接近,结果比基准线法更加精确,检测结果准确、有效.
推荐文章
基于最大中心间隔的缩放型η-极大熵聚类算法
最大中心间隔
数据缩放
极大熵聚类
中心一致
基于改进的最大熵均值聚类方法在文本分类中的应用
文本分类
最大熵
C-均值聚类
特征选择
基于模糊熵聚类的运动变化区域检测技术
运动变化区域
模糊聚类
模糊熵
阈值
一种改进的基于密度聚类的入侵检测算法
入侵检测
密度聚类
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最大熵与密度聚类相融合的毛羽检测
来源期刊 纺织学报 学科 工学
关键词 纱线毛羽 毛羽检测 最大熵阈值 密度聚类
年,卷(期) 2019,(7) 所属期刊栏目 管理与信息化
研究方向 页码范围 158-162
页数 5页 分类号 TP391.4
字数 4120字 语种 中文
DOI 10.13475/j.fzxb.20180801305
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李鹏飞 西安工程大学电子信息学院 157 710 12.0 17.0
2 景军锋 西安工程大学电子信息学院 143 578 12.0 16.0
3 张缓缓 西安工程大学电子信息学院 33 106 7.0 10.0
4 严凯 西安工程大学电子信息学院 5 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (82)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(2)
  • 参考文献(1)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(11)
  • 参考文献(1)
  • 二级参考文献(10)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
纱线毛羽
毛羽检测
最大熵阈值
密度聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
纺织学报
月刊
0253-9721
11-5167/TS
大16开
北京市朝外延静里中街3号主楼6层
1979
chi
出版文献量(篇)
7125
总下载数(次)
11
总被引数(次)
56621
论文1v1指导