原文服务方: 西安交通大学学报       
摘要:
针对传统基于Wi-Fi的身份识别方法手工编码特征效率低、准确率不高的问题,提出一种基于深度学习的非接触式身份识别(WiID)算法.该算法通过分析子载波中信道状态信息数据的空间相关性,建立了用于深度学习的输入矩阵;采用二维卷积运算从相邻子载波中提取局部空间特征;构建门限循环单元层,从时间维度对空间特征进行时序建模,完成空间与时间两个维度的步态特征提取,实现端到端的非接触式身份识别,有效减少了数据预处理工作量.实验结果表明,与卷积神经网络和循环神经网络算法相比,该算法识别准确率得到了有效提高;在6种不同的实验场景下,该算法的身份识别准确率介于92.9%~95.6%之间,具有良好的身份识别效果及算法鲁棒性.
推荐文章
基于深度学习的非接触掌纹识别方法
卷积神经网络
掌纹识别
深度学习
非接触
基于深度学习算法的带钢表面缺陷识别
带钢表面
深度学习
分类准确性
缺陷识别
基于深度学习的中文微博作者身份识别研究
作者身份识别
长短时记忆网络
卷积神经网络
特征自动提取
基于深度学习的手势识别算法设计
深度学习
卷积神经网络
实时手势识别
高效性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 非接触式身份识别的深度学习算法
来源期刊 西安交通大学学报 学科
关键词 非接触式身份识别 深度学习 信道状态信息
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 122-127
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.7652/xjtuxb201904018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹仰杰 郑州大学软件学院 24 207 7.0 13.0
2 余星达 郑州大学软件学院 1 2 1.0 1.0
3 陈文杰 郑州大学软件学院 1 2 1.0 1.0
4 王鼎 郑州大学软件学院 3 2 1.0 1.0
5 陈荟慧 佛山科学技术学院电子信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (6)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (3)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非接触式身份识别
深度学习
信道状态信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
论文1v1指导