基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,超像素在医学图像处理领域的应用愈加广泛,现有的方法取得了较好的效果,如LAW,SLIC等.然而,这些方法在处理医学图像得到超像素时,位于组织边缘像素点的划分仍存在类别模糊问题.为此,提出一种基于U-Net网络的超像素分割方法.首先,通过双边滤波模型过滤外部噪声,增强超像素信息;然后,结合U-Net卷积网络学习图像特征.该方法为U-Net网络中每个特征尺度的卷积层后嵌入一个规范层,用于增强网络对参数的敏感性.实验结果表明,该方法有效提高了医学图像超像素的分割精度,与ground truth相比,其改善了超像素边缘分类的准确性,优化了超像素分割结果,在精确度、召回率、F-measure和分割速度等性能指标上均取得了更好的效果.
推荐文章
基于U-Net卷积神经网络的轮毂缺陷分割
轮毂缺陷分割
自动分割
深度学习
神经网络
基于轻量型U-net的钢材金相图像晶界分割方法
金相图像
晶界分割
浅层特征信息
轻量型
U-net
基于Group-Depth U-Net的电子显微图像中神经元结构分割
深层卷积神经网络
分组卷积网络
神经元结构分割
电子显微成像
Group-DepthU-Net
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向医学图像分割的超像素U-Net网络设计
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 超像素 双边滤波 卷积网络 U-Net 医学图像分割
年,卷(期) 2019,(6) 所属期刊栏目 图像与视觉
研究方向 页码范围 1007-1017
页数 11页 分类号 TP391.41
字数 9808字 语种 中文
DOI 10.3724/SP.J.1089.2019.17389
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邓凯 山东省千佛山医院影像科 11 51 4.0 6.0
2 郭强 山东财经大学计算机科学与技术学院 13 51 5.0 6.0
4 刘慧 山东财经大学计算机科学与技术学院 23 95 6.0 8.0
8 王海鸥 山东财经大学计算机科学与技术学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (5)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (21)
二级引证文献  (0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超像素
双边滤波
卷积网络
U-Net
医学图像分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导