基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着旅行商问题(TSP)规模的增大,传统蚁群算法的运行时间会增大,算法的解精度也会降低,并且算法很容易陷入局部最优的情况.提出的分层递进算法的思想源于分工合作的产品线组装流程,首先利用改进的密度峰聚类算法确定拐点,从而选举出聚类中心,根据聚类中心确定包含的数据点;其次将初始的TSP问题分割成较小的簇,这些簇称为二类TSP问题;再经自适应信息素更新策略的蚁群算法运算,找出每个簇的最优解,进一步将簇与簇之间相近的节点构成的边断开;然后两簇之间断开的节点重组成全局最优解;最终通过局部优化策略对重组的优化解进一步优化,从而在保证算法解质量的前提下有效地缩短了运行时间.从TSPLIB中选取小规模、大规模基准案例,通过Matlab仿真验证了改进算法具有更好的鲁棒性,特别是在大规模基准案例中显著地减少了算法运行时间.
推荐文章
求解TSP的改进蚁群算法
蚁群算法(ACA)
旅行商问题
候选城市列表
聚类
蚁群系统(ACS)
求解TSP问题的改进最大最小蚁群算法
蚁群算法
旅行商问题
优质解
最大最小化
改进蚁群算法在文本聚类中的应用研究
蚁群算法
文本聚类
向量空间模型
信息素
解TSP问题的蚁群算法及其收敛性分析
旅行商问题
蚁群算法
收敛性
信息素
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 分层递进的改进聚类蚁群算法解决TSP问题*
来源期刊 计算机科学与探索 学科 工学
关键词 分层递进 密度峰聚类 蚁群算法 局部优化 旅行商问题(TSP)
年,卷(期) 2019,(8) 所属期刊栏目 学术研究
研究方向 页码范围 1280-1294
页数 15页 分类号 TP18
字数 10595字 语种 中文
DOI 10.3778/j.issn.1673-9418.1901022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 游晓明 上海工程技术大学电子电气工程学院 65 380 11.0 17.0
2 刘升 上海工程技术大学管理学院 89 467 10.0 19.0
3 冯志雨 上海工程技术大学电子电气工程学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (77)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (33)
二级引证文献  (0)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(5)
  • 参考文献(2)
  • 二级参考文献(3)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(9)
  • 参考文献(7)
  • 二级参考文献(2)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
分层递进
密度峰聚类
蚁群算法
局部优化
旅行商问题(TSP)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导