基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实现物流配送的低成本、高效率,建立了以最小化回收任务完成距离为目标的车辆配置及路径优化模型,并用Java编程进行实例验证.基于蚁群定值参数不能更好地反映循环次数调整的影响,提出一种改进蚁群算法,动态改进信息素更新策略和启发因子,并采用可行解先行策略.实例结果表明改进算法收敛速度快,搜索路径质量高,表明模型可行性和算法有效性.
推荐文章
基于改进蚁群算法的车辆路径优化问题研究
蚁群算法
车辆路径优化
信息素
物流
改进蚁群优化算法的最优物流配送路径设计
物流配送
物流路径设计
蚁群优化算法改进
路径优化模型
算法有效性分析
企业效益提升
求解车辆路径问题的改进蚁群算法
车辆路径问题
蚁群算法
遗传算法
变异算子
优化问题
收敛
基于多态蚁群算法的多目标邮政物流车辆路径问题研究
车辆路径问题
多态蚁群算法
多目标
邮政物流
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进蚁群算法的逆向物流车辆路径优化
来源期刊 制造业自动化 学科 交通运输
关键词 改进蚁群算法 逆向物流 车辆路径问题
年,卷(期) 2019,(5) 所属期刊栏目 控制技术
研究方向 页码范围 46-49
页数 4页 分类号 U116.2
字数 3653字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高更君 上海海事大学物流研究中心 28 87 6.0 9.0
2 陈秀娟 上海海事大学物流研究中心 1 1 1.0 1.0
3 冯媛媛 上海海事大学物流研究中心 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (97)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1964(2)
  • 参考文献(0)
  • 二级参考文献(2)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
改进蚁群算法
逆向物流
车辆路径问题
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
制造业自动化
月刊
1009-0134
11-4389/TP
大16开
北京德胜门外教场口1号
2-324
1979
chi
出版文献量(篇)
12053
总下载数(次)
12
总被引数(次)
59694
论文1v1指导