基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
汽车轮毂在加工和搬运过程中难免会产生划痕和擦伤等表面缺陷,为解决传统人工检测低效、耗时、检测精度低的缺点,提出使用机器视觉技术完成轮毂表面缺陷的检测.由于轮毂的表面结构复杂,提出将视觉系统安装在机械手末端完成图像采集,并以此提出了一种基于深度学习的汽车轮毂表面缺陷检测算法,该算法首先对采集的原始图片进行分割,然后对分割的图片进行图像增强处理,增强图像的对比度和缺陷的特征,然后将处理后的图片输入已经训练好的卷积神经网络,得出最终的检测结果.实验结果表明,该算法具有很高的准确率.
推荐文章
基于工业机器人的汽车轮毂表面缺陷的视觉检测系统设计
工业机器人
视觉系统
定位
图像处理
基于深度学习的偏光片缺陷实时检测算法
偏光片
缺陷检测
深度学习
并行模块
并行非对称卷积
全局均值池化
基于深度学习的磁芯表面缺陷检测研究
磁芯
缺陷检测
深度卷积生成对抗网络
图像融合
深度学习
基于深度主动学习的磁片表面缺陷检测
卷积神经网络
主动学习
缺陷检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的汽车轮毂表面缺陷检测算法研究
来源期刊 组合机床与自动化加工技术 学科 工学
关键词 汽车轮毂 缺陷检测 机器视觉 图像处理 深度学习
年,卷(期) 2019,(11) 所属期刊栏目 控制与检测
研究方向 页码范围 112-115
页数 4页 分类号 TH165.4|TG506
字数 2790字 语种 中文
DOI 10.13462/j.cnki.mmtamt.2019.11.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵海文 河北工业大学机械工程学院 46 234 9.0 13.0
5 赵亚川 河北工业大学机械工程学院 3 1 1.0 1.0
9 齐兴悦 河北工业大学机械工程学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (124)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (10)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(10)
  • 参考文献(2)
  • 二级参考文献(8)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
汽车轮毂
缺陷检测
机器视觉
图像处理
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
组合机床与自动化加工技术
月刊
1001-2265
21-1132/TG
大16开
大连市沙河口区新生路80号504室
8-62
1959
chi
出版文献量(篇)
9363
总下载数(次)
11
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导