基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
假数据注入攻击可以篡改由数据采集与监控(SCADA)系统采集到的量测信息,影响电网的重要决策,从而对电网状态估计造成安全威胁.针对智能电网状态估计,研究了交流模型下假数据注入攻击的原理,构建了基于改进卷积神经网络(CNN)的假数据注入攻击检测模型.将门控循环单元(GRU)结构加入CNN中的全连接层之前构建CNN-GRU混合神经网络,根据电网历史量测数据进行训练并更新网络参数,提取数据的空间和时间特征,并根据提出的模型设计实现了高效实时的假数据注入攻击检测器.最后,在IEEE 14节点和IEEE 118节点测试系统中,与基于传统CNN、循环神经网络及深度信念网络的检测方法分别进行了大量对比实验,验证了所提方法的有效性.
推荐文章
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
基于改进卷积神经网络的人体检测研究
行人检测
深度学习
卷积神经网络
复杂背景
基于卷积神经网络的缺失数据填充方法
缺失数据
填充
卷积神经网络
时空相关性
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进卷积神经网络的电网假数据注入攻击检测方法
来源期刊 电力系统自动化 学科
关键词 智能电网 状态估计 卷积神经网络 假数据注入攻击
年,卷(期) 2019,(20) 所属期刊栏目 学术研究
研究方向 页码范围 97-104
页数 8页 分类号
字数 6913字 语种 中文
DOI 10.7500/AEPS20180919001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李元诚 15 78 4.0 8.0
2 曾婧 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (79)
参考文献  (20)
节点文献
引证文献  (4)
同被引文献  (80)
二级引证文献  (1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(13)
  • 参考文献(5)
  • 二级参考文献(8)
2016(15)
  • 参考文献(5)
  • 二级参考文献(10)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(4)
  • 引证文献(3)
  • 二级引证文献(1)
研究主题发展历程
节点文献
智能电网
状态估计
卷积神经网络
假数据注入攻击
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统自动化
半月刊
1000-1026
32-1180/TP
大16开
江苏省南京市江宁区诚信大道19号
28-40
1977
chi
出版文献量(篇)
12334
总下载数(次)
31
总被引数(次)
449556
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导