基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Fluid properties and sources of Sixiangchang carbonateassociated mercury deposit, southwest China
Trace elements
Carbon and oxygen isotopes
Sulfur isotope
Calcite and dolomite
Youjiang Basin
Three-dimensional BuildingDamage Simulation Based on GISI
模拟
GIS技术
建筑物破坏
地震破坏
ArcGIS
软件开发环境
Engine
震害预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Segmentation of retinal fluid based on deep learning:application of three-dimensional fully convolutional neural networks in optical coherence tomography images
来源期刊 国际眼科杂志:英文版 学科 医学
关键词 optical COHERENCE tomography IMAGES FLUID segmentation 2D fully convolutional NETWORK 3D fully convolutional NETWORK
年,卷(期) gjykzzywb_2019,(6) 所属期刊栏目
研究方向 页码范围 1012-1020
页数 9页 分类号 R774.1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
optical
COHERENCE
tomography
IMAGES
FLUID
segmentation
2D
fully
convolutional
NETWORK
3D
fully
convolutional
NETWORK
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际眼科杂志:英文版
月刊
2222-3959
西安市友谊东路269号
出版文献量(篇)
2720
总下载数(次)
2
论文1v1指导