基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对短波信道下信号截获质量差,信道环境复杂以及单一特征识别率低等问题,提出了基于深度残差网络的信号特征自动提取算法,设计了一种具有自适应学习能力的短波特定通信协议识别模型.通过对具有特殊结构的协议信号的时频视觉差异进行理论推导,将信号的时频能量转换成灰度图像,并用于对所构建的深度残差网络进行训练.该方法克服了传统方法对信号质量要求高、先验信息需求多等缺陷,可直接对中频接收信号进行处理,适合实际工程应用.实验表明,当深度残差网络达到稳态时,识别准确率高,在低信噪比、多径衰落、多普勒频偏以及信号被强干扰所遮挡的情况下,依旧能准确识别协议类别.
推荐文章
组合深度残差网络手势识别
手势识别
残差网络
肤色模型
深度学习
迁移学习
人机交互
基于深度残差网络的脱机手写汉字识别研究
手写汉字识别
深度学习
深度残差网络
End-to-End
卷积神经网络
基于改进的深度残差网络的表情识别研究
深度学习
残差网络
表情识别
迁移学习
支持向量机
基于CycleGAN与深度残差网络的局放数据增强与模式识别方法
局部放电
生成对抗网络
深度残差网络
数据增强
模式识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度残差网络的特定协议信号识别
来源期刊 电子学报 学科 工学
关键词 时频分析 深度残差网络 低信噪比 多径时延 多普勒频偏 强干扰
年,卷(期) 2019,(7) 所属期刊栏目 学术论文
研究方向 页码范围 1532-1537
页数 6页 分类号 TN911.7
字数 4407字 语种 中文
DOI 10.3969/j.issn.0372-2112.2019.07.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭华 9 68 3.0 8.0
2 秦鑫 7 42 2.0 6.0
3 查雄 3 1 1.0 1.0
4 许漫坤 3 2 1.0 1.0
5 李天昀 4 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (10)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时频分析
深度残差网络
低信噪比
多径时延
多普勒频偏
强干扰
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
论文1v1指导