原文服务方: 计算机应用研究       
摘要:
计算机对人类情绪与情感的识别研究已经成为了脑机接口领域的研究热点.通过分析人类在生活中的各种情感状态,提取脑电信号的特征并对情感状态进行识别、分类是情感智能化领域的重要方向.针对基于音乐视频诱导的情感数据集DEAP进行了研究,提取脑电信号的频域特征后,提出了采用加速近邻梯度(APG)算法和正交匹配(OMP)算法求解稀疏编码的稀疏表示分类模型进行情感分类,并与支持向量机(SVM)算法进行效果比较.实验结果表明,APG算法通过l1范数正则近似求解以其快速的收敛速度在情感数据集上有着较好的分类表现,而OMP算法与SVM算法的分类效果相差无几,实现了情感脑电信号的分类.
推荐文章
基于字典优化的稀疏表示的视频镜头分类
稀疏表示
字典优化
视频镜头分类
基于多尺度稀疏表示的场景分类
稀疏表示
多尺度
场景分类
空间金字塔表示
基于稀疏表示的水声信号分类识别
压缩感知
稀疏表示
水声信号
特征提取
基于多任务联合稀疏表示的高光谱图像分类算法
多任务学习
稀疏表示
高光谱图像
图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表示的脑电(EEG)情感分类
来源期刊 计算机应用研究 学科
关键词 脑电信号 稀疏表示 情感 加速近邻算法 正交匹配算法
年,卷(期) 2019,(3) 所属期刊栏目 算法研究探讨
研究方向 页码范围 801-806
页数 6页 分类号 TP393.04
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2017.11.0992
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (11)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (19)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(3)
  • 参考文献(1)
  • 二级参考文献(2)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(11)
  • 参考文献(4)
  • 二级参考文献(7)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电信号
稀疏表示
情感
加速近邻算法
正交匹配算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导