基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
建筑物作为地理信息基础数据,是衡量城市发展的主要指标,如何时遥感影像对建筑物进行的提取是遥感图像处理的热点.本文研究了基于面向对象的高分遥感影像建筑物提取,首先对影像进行多尺度分割,然后对分割以后形成的有意义的图斑进行处理.结合建筑物的光谱、形状等特征对建筑物进行提取,实验结果表明该方法提取结果较好,精度可以达到90.3%.
推荐文章
边缘检测与面向对象结合的高分影像建筑物提取
建筑物提取
高分影像
面向对象
多尺度分割
边缘检测
多尺度显著性引导的高分辨率遥感影像建筑物提取
遥感影像
建筑物提取
显著性检测
多尺度
随机森林
基于多尺度特征融合模型的遥感图像建筑物分割
遥感图像
建筑物分割
深度神经网络
膨胀卷积
多尺度特征融合
基于深度学习的高分辨率 遥感影像建筑物提取
遥感影像;
建筑物提取;
多尺度;
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向对象的多尺度多特征高分遥感影像建筑物提取
来源期刊 北京测绘 学科 地球科学
关键词 高分辨率遥感影像 面向对象 多尺度分割 建筑物提取
年,卷(期) 2019,(2) 所属期刊栏目 技术应用
研究方向 页码范围 191-195
页数 5页 分类号 P237
字数 3816字 语种 中文
DOI 10.19580/j.cnki.1007-3000.2019.02.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林娜 重庆交通大学土木工程学院 13 53 4.0 6.0
2 吕道双 重庆交通大学土木工程学院 3 11 2.0 3.0
3 张小青 重庆交通大学土木工程学院 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (169)
参考文献  (15)
节点文献
引证文献  (9)
同被引文献  (76)
二级引证文献  (1)
1973(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(7)
  • 参考文献(2)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(6)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(5)
  • 二级引证文献(1)
2019(6)
  • 引证文献(5)
  • 二级引证文献(1)
2020(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高分辨率遥感影像
面向对象
多尺度分割
建筑物提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京测绘
月刊
1007-3000
11-3537/P
大16开
北京市海淀区羊坊店路15号
1987
chi
出版文献量(篇)
3644
总下载数(次)
21
总被引数(次)
13764
论文1v1指导