基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了点对点自动学习脑电信号(Electroencephalogram,EEG)空间与时间维度上的情感相关特征,提高脑电信号情感识别的准确率,基于DEAP数据集中EEG信号的时域、频域特征及其组合特征,提出一种基于卷积神经网络(Convolution Neural Network,CNN)模型的EEG情感特征学习与分类算法.采用包括集成决策树、支持向量机、线性判别分析和贝叶斯线性判别分析算法在内的浅层机器学习模型与CNN深度学习模型对DEAP数据集进行效价和唤醒度两个维度上的情感分类实验.实验结果表明,在效价和唤醒度两个维度上,深度CNN模型在时域和频域组合特征上均取得了目前最好的两类识别性能,在效价维度上比最佳的传统分类器集成决策树模型提高了3.58%,在唤醒度上比集成决策树模型的最好性能提高了3.29%.
推荐文章
基于脑电信号的情感识别研究
脑电信号
情感识别
微分熵
通道选择
遗传算法
基于改进的卷积神经网络脑电信号情感识别
脑电信号(EEG)
特征提取
卷积神经网络(CNN)
随机森林
损失函数
基于深度信念网络的脑电信号疲劳检测系统
深度信念
脑电信号
疲劳
解码器
玻尔兹曼机
脑电波动指数
基于卷积神经网络的ECG信号识别方法
ECG信号识别
短时傅里叶变换
卷积神经网络
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的脑电信号情感识别
来源期刊 计算机工程与应用 学科 工学
关键词 脑电信号 卷积神经网络 深度学习 情感识别 组合特征
年,卷(期) 2019,(18) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 103-110
页数 8页 分类号 TP39
字数 7757字 语种 中文
DOI 10.3778/j.issn.1002-8331.1901-0400
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 贾小云 陕西科技大学电气与信息工程学院 43 134 6.0 10.0
2 张鹏伟 陕西科技大学电气与信息工程学院 26 179 7.0 12.0
3 陈景霞 陕西科技大学电气与信息工程学院 28 195 7.0 13.0
7 王丽艳 陕西科技大学电气与信息工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (135)
共引文献  (69)
参考文献  (18)
节点文献
引证文献  (2)
同被引文献  (19)
二级引证文献  (0)
1931(1)
  • 参考文献(0)
  • 二级参考文献(1)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(7)
  • 参考文献(1)
  • 二级参考文献(6)
1998(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(12)
  • 参考文献(1)
  • 二级参考文献(11)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(9)
  • 参考文献(2)
  • 二级参考文献(7)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(13)
  • 参考文献(3)
  • 二级参考文献(10)
2017(12)
  • 参考文献(5)
  • 二级参考文献(7)
2018(5)
  • 参考文献(4)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电信号
卷积神经网络
深度学习
情感识别
组合特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导