基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
协同过滤推荐系统是应用最广泛的推荐算法之一,但是其面临严重的稀疏性问题和扩展性问题.针对稀疏的评分矩阵难以准确计算相似度的问题,从推荐算法的流程出发,分离候选集生成和评分预测.针对候选集中存在大量弱或不相关的项目和用户感兴趣比例较低的问题,引入关联度,使用关联矩阵生成候选集;评分预测阶段分析相似度对推荐效果的影响,总结现有相似度的不足,提出一种细粒度划分的"S"型相似度来表述理想增长曲线,并在算法流程中融合候选集生成和评分预测.实验结果表明,减小候选集规模为原来的1/3,避免了评分时对无效项目的计算,算法层面上提高了可扩展性,改进的"S"型相似度在推荐准确率上较之前提高了4%,缓解了稀疏性对推荐效果的影响.
推荐文章
融合正态分布函数相似度的协同过滤算法
相似度量
正态分布函数
协同过滤
邻近用户集合
基于项目综合相似度的协同过滤算法
协同过滤
项目相似度
类别相似度
综合相似度
发射率
社会化标签语义相似度的协同过滤算法
协同过滤
推荐系统
社会化标签
语义相似度
预测性能
填补法和改进相似度相结合的协同过滤算法
协同过滤算法
填补法
新相似度方法
结果融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合"S"型相似度和关联度的协同过滤算法
来源期刊 计算机技术与发展 学科 工学
关键词 协同过滤 相似度 关联度 稀疏性
年,卷(期) 2019,(3) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 35-40
页数 6页 分类号 TP311.1
字数 5752字 语种 中文
DOI 10.3969/j.issn.1673-629X.2019.03.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈亮 东华大学信息科学与技术学院 125 1242 18.0 27.0
2 王丹 东华大学信息科学与技术学院 17 33 3.0 5.0
3 胡亚兰 东华大学信息科学与技术学院 2 1 1.0 1.0
4 余相 东华大学信息科学与技术学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (1225)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
相似度
关联度
稀疏性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导