基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对图像风格迁移(Style Transfer)任务中的空间非对齐图像数据处理效果不理想的问题,提出一种基于语义学的最强引力方法.该方法是将图片与目标图片看作是一些高维度特征点(High-dimensional Feature Points)的集合,通过定义引力(Gravitation)来衡量两张图片中高维度特征点的相似程度.如果两张图片相似,则对应高维度特征点也互相吸引.生成图像的每个特征点在目标图像中找到与自身引力最强的特征点,然后最小化最强引力损失函数.实验结果表明,该方法对两张图片中语义相似的区域有很强的敏感度,生成图片的质量明显优于若干经典的方法.
推荐文章
基于深度学习的图像风格迁移研究综述
图像风格迁移
深度学习
迁移学习
纹理合成
基于图像蒙板的无监督图像风格迁移
图像风格迁移
生成式对抗网络
无监督学习
图像蒙板
深度学习
基于生成模型的图像风格迁移设计与实现
图像风格迁移
生成模型
生成网络
VGG网络
基于图像风格迁移的人脸识别域适应方法
人脸识别
图像风格
生成对抗网络
域适应
图像风格迁移
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最强引力的空间非对齐图像数据风格迁移
来源期刊 小型微型计算机系统 学科 工学
关键词 图像风格迁移 空间非对齐图像数据 高维度特征点 引力
年,卷(期) 2019,(3) 所属期刊栏目 图形与图像技术
研究方向 页码范围 651-654
页数 4页 分类号 TP391
字数 3583字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 帅仁俊 南京工业大学计算机科学与技术学院 38 154 7.0 10.0
2 陶静 南京工业大学计算机科学与技术学院 5 6 2.0 2.0
3 刘洪麟 南京工业大学计算机科学与技术学院 4 4 1.0 1.0
4 张秋艳 南京工业大学经济与管理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (3)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像风格迁移
空间非对齐图像数据
高维度特征点
引力
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导