原文服务方: 计算机应用研究       
摘要:
监控场景下的带标签人脸数据难以获取,尽管可以利用已有的公开数据集或合成数据,但这些数据与真实的监控人脸数据在图像风格上存在较大的域间差异.针对该问题,不同于基于特征或公共子空间的域适应方法,提出一种基于图像风格迁移的解决方法.具体地,基于CycleGAN网络改进得到Face-CycleGAN,在保持身份属性的前提下,对现有带标签数据进行风格迁移,使其在背景、光照、皮肤材质等方面与监控场景更接近,并进一步通过联合滤波对迁移图像进行后处理.最后,利用迁移得到的数据优化人脸识别算法,减小域间差异带来的负面影响.提出的方法在公开数据集EK-LFH和自建数据集3DProj-Sur上进行了实验评估,分别取得了21.93%和4.77%的识别率提升,证明了该方法在解决域适应问题上是有效的.
推荐文章
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
视频图像中的人脸识别
人脸定位
肤色模型
人脸轮廓
人脸识别
神经网络
通过域适应实现人脸识别
人脸识别
域适应
相对权值
正规化的Bregman divergence
基于视频监控的人脸识别方法
人脸识别
监控视频
人脸序列
协同识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图像风格迁移的人脸识别域适应方法
来源期刊 计算机应用研究 学科
关键词 人脸识别 图像风格 生成对抗网络 域适应 图像风格迁移
年,卷(期) 2020,(11) 所属期刊栏目 图形图像技术
研究方向 页码范围 3496-3499
页数 4页 分类号 TP391.41
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.06.0242
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程鹏 10 36 2.0 6.0
2 王通平 3 0 0.0 0.0
3 傅可人 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (9)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
图像风格
生成对抗网络
域适应
图像风格迁移
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导