基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高高光谱遥感图像的分类精度,通过局部保留判别式分析与深度卷积神经网络(DCNN)算法,提出了基于局部保留降维卷积神经网络的高光谱图像分类算法.首先,用局部保留判别式分析对高光谱数据降维,再用二维Gabor滤波器对降维后的高光谱数据进行滤波,生成空间隧道信息;其次,用卷积神经网络对原始高光谱数据进行特征提取,生成光谱隧道信息;再次,融合空间隧道信息与光谱隧道信息,形成空间-光谱特征信息,并将其输入到深度卷积神经网络,提取更加有效的特征;最后,采用双重优选分类器对最终提取的特征进行分类.将本文方法与CNN、PCA-SVM、CD-CNN和CNN-PPF等算法在Indian Pines、University of Pavia高光谱遥感数据库上进行性能比较.在Indian Pines、University of Pavia数据库上,本文算法识别的整体精度比传统CNN方法的整体精度分别高3.81个百分点与6.62个百分点.实验结果表明,本文算法无论在分类精度还是Kappa系数都优于另外4种算法.
推荐文章
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
局部保护降维与高斯混合模型的高光谱图像分类
高斯混合模型
局部保护投影
局部保护非负矩阵分离
高光谱图像分类
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部保留降维卷积神经网络的高光谱图像分类算法
来源期刊 农业机械学报 学科 工学
关键词 高光谱图像 Gabor特征 局部保留降维 空-谱结合 DCNN深度学习 双重优选分类器
年,卷(期) 2019,(3) 所属期刊栏目 农业信息化工程
研究方向 页码范围 136-143
页数 8页 分类号 TP391.9
字数 语种 中文
DOI 10.6041/j.issn.1000-1298.2019.03.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 齐永锋 31 188 8.0 12.0
2 李发勇 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (18)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(10)
  • 参考文献(3)
  • 二级参考文献(7)
2017(7)
  • 参考文献(6)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像
Gabor特征
局部保留降维
空-谱结合
DCNN深度学习
双重优选分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农业机械学报
月刊
1000-1298
11-1964/S
大16开
北京德外北沙滩1号6信箱
2-363
1957
chi
出版文献量(篇)
11867
总下载数(次)
31
总被引数(次)
174483
论文1v1指导