基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有推荐系统推荐覆盖范围不高的问题,提出一种融合项目流行度和用户信任关系的矩阵分解推荐算法.合并用户-项目评分矩阵和用户-用户信任关系矩阵,通过矩阵分解的方式同时传递信任和推荐项目,极大提高了推荐算法的覆盖率,但损失了现有方法8%左右的精度.将项目流行度作为权重因子,引入到高稀疏性的用户-项目评分矩阵中,根据项目流行度对用户评分项目和未评分项目分别进行加权处理,提高了推荐算法的准确率.通过在Epinions数据集上的对比实验结果表明,该算法在大幅度改善推荐覆盖率的同时,保证了推荐的准确率,能够给于用户更好的推荐效果.
推荐文章
融合隐含信任度和项目关联度的矩阵分解推荐算法
推荐系统
协同过滤
社交网络
隐含信任度
项目关联度
矩阵分解
基于信任和概率矩阵分解的协同推荐算法研究
推荐系统
协同过滤
信任
数据稀疏
冷启动
矩阵分解
融合隐含信任度和项目关联度的矩阵分解推荐算法
推荐系统
协同过滤
社交网络
隐含信任度
项目关联度
矩阵分解
基于标签的矩阵分解推荐算法
标签
矩阵分解
推荐算法
因子向量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于信任关系和项目流行度的矩阵分解推荐算法
来源期刊 计算机应用与软件 学科 工学
关键词 推荐 信任关系 项目流行度 矩阵分解
年,卷(期) 2019,(9) 所属期刊栏目 算法
研究方向 页码范围 249-254,275
页数 7页 分类号 TP3
字数 4553字 语种 中文
DOI 10.3969/j.issn.1000-386x.2019.09.044
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李卫疆 昆明理工大学信息工程与自动化学院 18 106 4.0 10.0
2 郑雅民 昆明理工大学信息工程与自动化学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (19)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (9)
二级引证文献  (0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐
信任关系
项目流行度
矩阵分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导