为了满足西瓜成熟度的快速无损检测需求,该研究主要利用声学技术、近红外光谱技术结合K最近邻法(k-nearest neighbor,KNN)、线性判别分析(linear discriminant analysis,LDA)和反向传播人工神经网络(back propagation artificial neural network,BP-ANN)3种化学计量学方法对不同成熟度的西瓜进行定性判别;同时采用联合区间偏最小二乘筛选法(synergy interval partial least squares,Si-PLS)分别建立声学技术、近红外光谱技术、融合技术的西瓜可溶性固形物预测模型.结果表明融合技术处理结果均优于单一信号,其LDA模型数据的西瓜成熟度模型识别率较佳,校正集和预测集的识别率分别为100.00%和91.67%.同时,基于融合技术所建立的西瓜可溶性固形物预测模型效果较佳,其校正集的均方差根误差(root mean squared error of the calibration set,RMSECV)为0.601%,预测集的均方差误差(root mean squared error of the prediction set,RMSEP)为0.725%,相比的单独音频信号其均方根误差分别降低了0.081、0.068个百分点.研究结果可为高精度的西瓜品质快速鉴别提供参考.