基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前已有的脑网络分类方法大多是通过处理收集的信号来构建脑网络,并根据一个或多个脑区之间的脑网络特征属性来进行分类.该分类方法只考虑一个特征属性,忽略了脑网络的其他特征属性,而被忽略的特征属性很可能会对实验结果产生较大的影响.为了克服已有分类方法的缺陷,文中考虑多种特征属性提出了一种基于多形式特征向量的脑网络分类方法并使用了新型图核,该分类方法由4步构成:将原始实验数据经过预处理后完成脑网络构建;根据不同的阈值来提取脑网络中多种脑网络属性值;利用支持向量机训练所有数据,根据训练结果的优劣,在每种网络属性值里挑选分类效果最优的阈值参数,并将它们进行特征融合;使用支持向量机训练融合后的特征向量.通过实验数据分析并与已有分类方法进行了对比,验证该方法在轻度认知障碍数据集上脑网络分类的有效性.
推荐文章
基于特征向量法和支持向量机的抑郁症脑电信号分类
特征向量法
分类
支持向量机
抑郁症
一种面向文本分类的特征向量优化方法
机器学习
Mahout
特征向量
向量优化
文本分类
方阵的模糊特征向量
模糊数
特征值
特征向量
模糊线性系统
谐波能量谱特征向量的高光谱影像Bayes分类
高光谱影像
频率域变换
谐波分析
能量谱
Bayes准则
监督分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多形式特征向量脑网络分类方法研究
来源期刊 计算机工程与应用 学科 工学
关键词 脑网络 支持向量机 轻度认知障碍 图核
年,卷(期) 2019,(24) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 96-101,246
页数 7页 分类号 TP391
字数 4601字 语种 中文
DOI 10.3778/j.issn.1002-8331.1809-0371
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张大坤 天津工业大学计算机科学与技术学院 33 208 8.0 13.0
2 杨楠 天津工业大学计算机科学与技术学院 6 71 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (5)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(7)
  • 参考文献(5)
  • 二级参考文献(2)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑网络
支持向量机
轻度认知障碍
图核
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导