作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
笔者针对网络特征选择问题,提出一种鲶鱼粒子群算法选择特征的支持向量机网络入侵检测(EPSO-SVM).首先将“鲶鱼效应”因子引入粒子群优化算法,将网络特征子集编码成粒子位置串,其次将入侵检测率作为特征子集选择目标函数,通过鲶鱼粒子群找到最优特征子集,最后支持向量机根据最优特征子集构建网络入侵分类器,在KDD Cup 99数据集上进行仿真测试.结果 表明,EPSO-SVM不仅能提高网络入侵检测率和检测速度,而且适用于现实高速网络应用环境.
推荐文章
粒子群算法和SVM的网络入侵检测
粒子群算法
支持向量机
网络入侵
检测算法
使用粒子群算法进行特征选择及对支持向量机参数的优化
支持向量机
参数优化
粒子群算法
2进制编码
改进支持向量机在网络入侵检测中的应用
粒子群优化算法
核主成分分析
支持向量机
入侵检测
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 鲶鱼粒子群算法选择特征的支持向量机网络入侵检测
来源期刊 信息与电脑 学科 工学
关键词 网络入侵 支持向量机 鲶鱼效应 粒子群优化算法
年,卷(期) 2019,(6) 所属期刊栏目 算法语言
研究方向 页码范围 56-59
页数 4页 分类号 TP18|TP393.08
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 戴臻 7 37 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (85)
共引文献  (101)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(12)
  • 参考文献(0)
  • 二级参考文献(12)
2007(15)
  • 参考文献(0)
  • 二级参考文献(15)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(13)
  • 参考文献(2)
  • 二级参考文献(11)
2011(10)
  • 参考文献(4)
  • 二级参考文献(6)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络入侵
支持向量机
鲶鱼效应
粒子群优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与电脑
半月刊
1003-9767
11-2697/TP
北京市东城区北河沿大街79号
chi
出版文献量(篇)
16624
总下载数(次)
72
总被引数(次)
19907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导