基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The decision of traffic congestion degree is an important research topic today.In severe traffic jams,the speed of the car is slow,and the speed estimate is very inaccurate.This paper first uses the data collected by Google Maps to reclassify road levels by using analytic hierarchy process.The vehicle speed,road length,normal travel time,traffic volume,and road level are selected as the input features of the limit learning machine,and the delay coefficient is selected.As the limit learning machine as the output value,10-fold cross-validation is used.Compared with the traditional neural network,it is found that the training speed of the limit learning machine is 10 times that of the traditional neural network,and the mean square error is 0.8 times that of the traditional neural network.The stability of the model Significantly higher than traditional neural networks.Finally,the delay coefficient predicted by the extreme learning machine and the normal travel time are combined with the knowledge of queuing theory to finally predict the delay time.
推荐文章
The Road Not Taken中的象征主义及其艺术特征
罗伯特·弗罗斯特
The Road Not Taken
象征主义
艺术特征
Elemental characteristics of lacustrine oil shale and its controlling factors of palaeo-sedimentary
Elemental geochemistry
Palaeosedimentary
Main controlling factors
Lacustrine oil shale
Triassic
Ordos Basin
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Factors Affecting Road Rating
来源期刊 建筑与工程前沿研究(英文) 学科 数学
关键词 EXTREME learning machine QUEUING theory ANALYTIC HIERARCHY process Traffic CONGESTION
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 17-21
页数 5页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
EXTREME
learning
machine
QUEUING
theory
ANALYTIC
HIERARCHY
process
Traffic
CONGESTION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
建筑与工程前沿研究(英文)
季刊
2591-7595
12 Eu Tong Sen Stree
出版文献量(篇)
61
总下载数(次)
0
总被引数(次)
0
论文1v1指导