基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决依赖装维上门鉴别光网络单元故障带来的不便,可以从机器视觉入手实现自动化故障识别.近年,ImageNet挑战赛的成功推动了物体识别技术的跨越式发展,特别是基于卷积的深度学习技术在视觉识别方面已经达到人类水平,为光网络单元故障的自动识别提供了技术基础.文章对识别光网络单元的工作状态进行了研究,将设备工作状态分为7个场景,提出了利用手机APP采集图片识别故障的解决方案并投入了实际生产;重点阐述了深度学习模块的设计与实现,提出一种通过算法整合的方式综合运用物体检测和图像分类算法,分3阶段逐步求精,解决了图片过滤,光网络单元型号和状态识别等问题,实现了基于计算机视觉自动识别光网络单元故障.从数据上看产品的端到端准确率超过84%,识别速度达到10 FPS,月均提供服务超过1万人次,在减少用户等待的同时节约了人力资源.
推荐文章
基于光网络的深度学习算法研究
计算机视觉
图像理解
卷积神经网络
多层感知器
一种融合型光网络单元的设计与实现
光网络单元
网络融合
EPON
WiFi
基于同步传输的射频光网络单元设计
射频光网络单元
光突发模式
同步传输
时分复用
基于深度学习的手势识别算法设计
深度学习
卷积神经网络
实时手势识别
高效性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度学习识别光网络单元故障的设计与应用
来源期刊 计算机技术与发展 学科 工学
关键词 深度学习 物体检测 图片分类 客户服务 光网络单元
年,卷(期) 2020,(5) 所属期刊栏目 应用开发研究
研究方向 页码范围 211-215
页数 5页 分类号 TP391.4
字数 2742字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.05.040
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡毅 华南理工大学软件学院 6 28 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (90)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
物体检测
图片分类
客户服务
光网络单元
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导