基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this study,vector quantization and hidden Markov models were used to achieve speech command recognition.Pre-emphasis,a hamming window,and Mel-frequency cepstral coefficients were first adopted to obtain feature values.Subsequently,vector quantization and HMMs(hidden Markov models)were employed to achieve speech command recognition.The recorded speech length was three Chinese characters,which were used to test the method.Five phrases pronounced mixing various human voices were recorded and used to test the models.The recorded phrases were then used for speech command recognition to demonstrate whether the experiment results were satisfactory.
推荐文章
Application ontology构建及SPARQL查询研究
本体
手机应用
简单协议和RDF查询语言
查询
本体描述语言
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Application of Hidden Markov Models in Speech Command Recognition
来源期刊 机械工程与自动化:英文版 学科 工学
关键词 HMMs Mel-frequency cepstral coefficients speech command recognition vector quantization
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 41-45
页数 5页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
HMMs
Mel-frequency
cepstral
coefficients
speech
command
recognition
vector
quantization
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程与自动化:英文版
月刊
2159-5275
武汉洪山区卓刀泉北路金桥花园C座4楼
出版文献量(篇)
651
总下载数(次)
1
总被引数(次)
0
论文1v1指导