原文服务方: 河北省科学院学报       
摘要:
随机森林算法是一种高度灵活且易于使用的机器学习算法,目前在遥感影像分类中应用广泛.为了验证其在城市土地覆盖分类中的效果,本文对河南省洛阳市局部城区进行了土地覆盖分类实验,将Landsat 8(OLI)遥感影像的光谱波段、光谱指数和纹理特征相结合,构成多种特征组合进行随机森林算法分类比较,选择分类效果最佳方案,并与支持向量机方法进行比较.后利用随机森林算法对该组合特征变量高维数据进行降维处理,得到优化特征方案.实验结果表明:采用多源特征组合的随机森林算法的土地利用分类效果最佳,总体精度为90.54%,Kappa系数为0.890,比支持向量机方法的分类精度提高了3.1%;降维处理后的特征方案与随机森林结合在保证分类结果拥有高准确度的同时,减少了运算时间,实现了土地覆被类型信息的高效获取.表明随机森林算法在城区土地覆盖分类上有很好的适用性与稳定性.
推荐文章
基于随机森林算法的农耕区土地利用分类研究
土地利用分类
农耕区
随机森林算法
多源信息
特征选择
基于小波变换和随机森林的森林类型分类研究
森林类型
小波变换
随机森林
分类
高分一号卫星影像
基于特征选择的极限随机森林算法研究
概率相关性
特征选择
特征子集
极限随机森林
基于特征优选随机森林算法的农耕区土地利用分类
随机森林算法
土地利用分类
农耕区
特征优选
Sentinel-2
红边指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机森林算法的城区土地覆盖分类研究
来源期刊 河北省科学院学报 学科
关键词 随机森林算法 城市区域 土地覆盖分类 特征选择 降维处理
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 8-16
页数 9页 分类号 TP751
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 左晓庆 洛阳师范学院国土与旅游学院 1 0 0.0 0.0
2 李潇雨 洛阳师范学院国土与旅游学院 1 0 0.0 0.0
3 刘怀鹏 洛阳师范学院国土与旅游学院 7 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (213)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(8)
  • 参考文献(1)
  • 二级参考文献(7)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
随机森林算法
城市区域
土地覆盖分类
特征选择
降维处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北省科学院学报
季刊
1001-9383
13-1081/N
大16开
1984-01-01
chi
出版文献量(篇)
1648
总下载数(次)
0
论文1v1指导