基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在开放的电力市场中,日前电价预测是个重要的研究方向.本文提出了一种基于经验模式分解(EMD)与长短期记忆神经网络(LSTM)的序列电价预测模型,使用EMD提取电价序列中的周期分量与趋势分量,利用LSTM分别对周期分量与趋势分量进行序列预测,输出各分量的预测结果,通过支持向量机回归(SVR)叠加各分量的预测序列生成预测价格序列.最后,以美国PJM电力市场的电价数据为算例,与ARIMA模型、单一LSTM神经网络模型的预测结果进行比较,验证了EMD-LSTM-SVR模型能够提高短期电价预测精度.
推荐文章
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
基于TensorFlow的LSTM循环神经网络短期电力负荷预测
Tensor Flow
LSTM
深度学习
短期电力负荷预测
基于LSTM循环神经网络的电池SOC预测方法
锂离子电池
荷电状态(SOC)
电动汽车
长短期记忆(LSTM)
循环神经网络
基于混沌与改进BP神经网络的电价预测方法
电力市场
神经网络
混沌
电价
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于经验模式分解与LSTM神经网络的短期电价预测模型
来源期刊 西安理工大学学报 学科 工学
关键词 短期电价预测 经验模式分解 长短期记忆网络 电力市场
年,卷(期) 2020,(1) 所属期刊栏目 电气工程
研究方向 页码范围 129-134
页数 6页 分类号 TM-9
字数 4754字 语种 中文
DOI 10.19322/j.cnki.issn.1006-4710.2020.01.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖先勇 四川大学电气工程学院 223 2612 27.0 42.0
2 勾玄 四川大学电气工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (65)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(17)
  • 参考文献(5)
  • 二级参考文献(12)
2017(11)
  • 参考文献(2)
  • 二级参考文献(9)
2018(8)
  • 参考文献(4)
  • 二级参考文献(4)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期电价预测
经验模式分解
长短期记忆网络
电力市场
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安理工大学学报
季刊
1006-4710
61-1294/N
大16开
西安市金花南路5号
1978
chi
出版文献量(篇)
2223
总下载数(次)
6
总被引数(次)
21166
论文1v1指导