基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of groundwater resources. In this study, a new nonlinear autoregressive with exogenous inputs(NARX) network has been applied to simulate monthly groundwater levels in a well of Sylhet Sadar at a local scale. The Levenberg-Marquardt(LM) and Bayesian Regularization(BR) algorithms were used to train the NARX network, and the results were compared to determine the best architecture for predicting monthly groundwater levels over time. The comparison between LM and BR showed that NARX-BR has advantages over predicting monthly levels based on the Mean Squared Error(MSE), coefficient of determination(R~2), and Nash-Sutcliffe coefficient of efficiency(NSE). The results show that BR is the most accurate method for predicting groundwater levels with an error of ± 0.35 m. This method is applied to the management of irrigation water source, which provides important information for the prediction of local groundwater fluctuation at local level during a short period.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh
来源期刊 地下水科学与工程:英文版 学科 地球科学
关键词 NARX neural networks Artificial neural networks Groundwater level Levenberg-Marquardt Algorithm(LMA) Bayesian Regularization Algorithm(BRA)
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 118-126
页数 9页 分类号 P641.7
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NARX
neural
networks
Artificial
neural
networks
Groundwater
level
Levenberg-Marquardt
Algorithm(LMA)
Bayesian
Regularization
Algorithm(BRA)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地下水科学与工程:英文版
季刊
2305-7068
河北省石家庄市中华北大街268号
出版文献量(篇)
277
总下载数(次)
0
总被引数(次)
0
论文1v1指导