基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
As two widely used evolutionary algorithms,particle swarm optimization(PSO)and firefly algorithm(FA)have been successfully applied to diverse difficult applications.And extensive experiments verify their own merits and characteristics.To efficiently utilize different advantages of PSO and FA,three novel operators are proposed in a hybrid optimizer based on the two algorithms,named as FAPSO in this paper.Firstly,the population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic algorithm to carry out the optimization process,respectively.To exchange the information of the two sub-populations and then efficiently utilize the merits of PSO and FA,the sub-populations share their own optimal solutions while they have stagnated more than a predefined threshold.Secondly,each dimension of the search space is divided into many small-sized sub-regions,based on which much historical knowledge is recorded to help the current best solution to carry out a detecting operator.The purposeful detecting operator enables the population to find a more promising sub-region,and then jumps out of a possible local optimum.Lastly,a classical local search strategy,i.e.,BFGS QuasiNewton method,is introduced to improve the exploitative capability of FAPSO.Extensive simulations upon different functions demonstrate that FAPSO is not only outperforms the two basic algorithm,i.e.,FA and PSO,but also surpasses some state-of-the-art variants of FA and PSO,as well as two hybrid algorithms.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Hybrid Optimizer Based On Firefly Algorithm And Particle Swarm Optimization Algorithm
来源期刊 江西公路科技 学科 工学
关键词 FIREFLY algorithm Particle SWARM optimization KNOWLEDGE-BASED detecting Local SEARCH OPERATOR
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 55-73
页数 19页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FIREFLY
algorithm
Particle
SWARM
optimization
KNOWLEDGE-BASED
detecting
Local
SEARCH
OPERATOR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江西公路科技
季刊
南昌市红谷大道1358号9楼
出版文献量(篇)
2362
总下载数(次)
9
总被引数(次)
0
论文1v1指导