基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper presents a novel automatic mammography recognition approach used to develop computer-aided diagnostic systems that require a robust method to assist the radiologist in identifying and recognizing speculations from a multitude of lines corresponding to the normal fibrous breast tissue.Following this rationale,this paper introduces a novel approach for detecting the speculated lesions in digital mammograms based on multi-scale SIFT(scale-invariant feature transform)orientations.The proposed method starts by estimating a set of key points that best represent the image mammography in a scale space.We then benefit from SIFT algorithm to locally characterize each key point by assigning a consistent orientation.Thereafter,a set of three features are extracted for each pixel in the image mammogram based on these orientations.The extracted features are fed into BDT(binary decision tree)in order to perform per pixel classification and decide whether the pixel is normal or abnormal.We evaluate the proposed system on BCDR(breast cancer digital repository)database and the experimental results show that our method is accurate with 97.95%recognition rate,while it is robust to illumination changes,rotation and scale variations.
推荐文章
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Automatic Detection of Stellate Lesions in Digital Mammograms Using Multi-scale SIFT
来源期刊 药剂与药理学:英文版 学科 工学
关键词 DIGITAL MAMMOGRAMS speculated LESIONS SIFT ORIENTATION BDT
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 24-34
页数 11页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DIGITAL
MAMMOGRAMS
speculated
LESIONS
SIFT
ORIENTATION
BDT
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
药剂与药理学:英文版
月刊
2328-2150
武汉市洪山区卓刀泉北路金桥花园C座4楼
出版文献量(篇)
228
总下载数(次)
0
总被引数(次)
0
论文1v1指导