基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有道路最近邻查询算法均以数据点作为道路端点进行查询,并未考虑数据点在道路上的情况,使得在大数据量时查询效率不够理想的问题,利用格网划分算法进行解决.利用分治法的思想,将查询区域进行格网划分,缩小有效的查询区域,快速定位查询点所在道路,进而找到最近邻数据点.研究结果表明:当数据量足够大时,格网划分算法与增量网络扩张(INE)算法相比,查询时间明显降低,效率明显提升,格网划分查询的时间复杂度为O(1);当数据量较少时,格网划分算法与INE算法相比,查询时间减少并不明显,表明格网划分算法更适用于大数据量最近邻查询.
推荐文章
基于概率的反向 K最近邻高效查询算法研究
反向最近邻查询
数据库
概率
未知对象
修剪机制
基于4-叉树结构的路网数据最近邻查询算法
路网
最近邻查询
结构分区
4-叉树
基于Voronoi图的最近邻查询的研究
Voronoi图
k最近邻查询
VR树
面向移动对象的高效组最近邻居查询方法
组最近邻查询
网格索引
步长迭代法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于格网划分的道路最近邻查询算法
来源期刊 河南科技大学学报(自然科学版) 学科 工学
关键词 道路最近邻 空间查询 空间数据库 格网划分
年,卷(期) 2020,(1) 所属期刊栏目 电工电信、自动化与计算机
研究方向 页码范围 30-35
页数 6页 分类号 TP311.13
字数 3437字 语种 中文
DOI 10.15926/j.cnki.issn1672-6871.2020.01.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 凡高娟 河南大学计算机与信息工程学院 16 134 5.0 11.0
2 闫红松 河南大学计算机与信息工程学院 1 0 0.0 0.0
3 George Almpanidis 河南大学计算机与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (5)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
道路最近邻
空间查询
空间数据库
格网划分
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南科技大学学报(自然科学版)
双月刊
1672-6871
41-1362/N
大16开
河南省洛阳市开元大道263号
36-285
1980
chi
出版文献量(篇)
3214
总下载数(次)
7
总被引数(次)
19453
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导