基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the
推荐文章
The morphological characteristics of gully systems and watersheds in Dry-Hot Valley, SW China
Morphological characteristics
Quantitative relationships
Gully system
Watershed
Dry-Hot Valley
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Second-Order Adjoint Sensitivity Analysis Methodology for Computing Exactly Response Sensitivities to Uncertain Parameters and Boundaries of Linear Systems: Mathematical Framework
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2nd-CASAM) First-Level Adjoint Sensitivity System (1st-LASS) Second-Level Adjoint Sensitivity System (2nd-LASS) Operator-Type Response Second-Order Sensitivities to Uncertain Model Boundaries Second-Order Sensitivities to Uncertain Model Parameters
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 329-354
页数 26页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Second-Order
Comprehensive
Adjoint
Sensitivity
Analysis
Methodology
(2nd-CASAM)
First-Level
Adjoint
Sensitivity
System
(1st-LASS)
Second-Level
Adjoint
Sensitivity
System
(2nd-LASS)
Operator-Type
Response
Second-Order
Sensitivities
to
Uncertain
Model
Boundaries
Second-Order
Sensitivities
to
Uncertain
Model
Parameters
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导